352 research outputs found

    Antimicrobial, antioxidant, anti-inflammatory activities and phytoconstituents of extracts from the roots of Dissotis thollonii Cogn. (Melastomataceae)

    Get PDF
    Abstract Background Dissotis thollonii Cogn. belonging to the Malastomataceae family is used in the West Region of Cameroon for the treatment of inflammation, kidney diseases, pregnancy control and sinusitis. Despite the traditional use of this plant, no scientific report or information was found in the literature regarding neither its biological activity nor its chemical constituents. Aim of the study The present work was designed to determine the antimicrobial, antioxidant and anti-inflammatory activities of different extracts of the roots of D. thollonii Cogn. as well as the isolation and identification of the chemical constituents of this plant. Materials and methods The tests for antimicrobial, antioxidant and anti-inflammatory activities were performed over the MeOH, EtOAc, n-BuOH and aqueous extracts. Compounds were isolated from EtOAc and n-BuOH extracts of the roots of D. thollonii Cogn. through column chromatography and their structures were determined by means of NMR and MS analysis, and published data. Results According to the antimicrobial and antioxidant assays, the EtOAc and n-BuOH extracts were submitted to further separation and purification. This led to the isolation of twelve compounds identified as 3,3′-di- O -methylellagic acid 4′- O-β -D-xylopyranoside 1 , 3- O -methylellagic acid 4′- O-β -D-arabinopyranoside 2 , casuarinin 3 , betulinic acid 4 , β -sitosterol-3- O -D-glucopyranosyl-6′-mirystate 5 , cellobiosylsterol 6 , β -sitosterol 7 , β -sitosterol-3- O-β -D-glucopyranoside 8, arjunolic acid 9 , 3,3′-di- O -methylellagic acid 10 , ellagic acid 11 , and 3,3′-di- O -methylellagic acid 4′- O - β -D-glucopyranoside 12 . The EtOAc extract was the only antimicrobial active sample [diameter of the zone of inhibition (DZI) of 10 mm against Staphyloccocus aureus ] among all the tested extracts. The analysis of fractions of this extract revealed the presence of bioactive compounds with a described antimicrobial activity such as β -sitosterol, β -sitosterol-3- O-β -D-glucopyranoside and arjunolic acid. By using Trolox as the standard drug, all extracts showed antioxidant activity against DPPH in the following order of scavenging ability: Trolox > nBuOH > EtOAc > MeOH > WE (water extract). The ABTS •+ scavenging ability was similar to that found for the DPPH assay, being Trolox > n-BuOH > MeOH > EtOAc > WE. Along with the DPPH and ABTS assays, the FRAP assay showed the scale n-BuOH > MeOH > WE > EtOAc. The phytochemical study of the EtOAc and n-BuOH extracts revealed the presence of important known antioxidant compounds such as ellagic acid derivatives, arjunolic acid, betulinic acid and β -sitosterol. The anti-inflammatory properties of D. thollonii extracts were investigated using RAW 264.7 murine macrophage cells. The MeOH extract reduced the stimulated NO production in a concentration-dependent manner. 86% reduction was observed at the highest tested concentration of 100 μg/ml (IC 50 = 5.9 μg/ml). The n-BuOH extract showed higher dose dependent reduction of NO formation (IC 50 = 6.5 μg/ml) than the EtOAc extract (IC 50 = 18.1 μg/ml), whereas the water extract had no significant influence on the NO production. All the extracts did not have any influence on the macrophage viability. The phytochemical investigation of the EtOAc and n-BuOH extracts revealed that the main compounds identified do have potent anti-inflammatory properties. Conclusion The biological and phytochemical characterization of the root extracts of D. thollonii validates the use of this plant for the treatment of inflammation and sinusitis, thus providing evidence that this plant extracts, as well as some of the isolated compounds, might be potential sources of antioxidant and anti-inflammatory drugs

    Genotype of Immunologically Hot or Cold Tumors Determines the Antitumor Immune Response and Efficacy by Fully Virulent Retargeted oHSV

    Get PDF
    We report on the efficacy of the non-attenuated HER2-retargeted oHSV named R-337 against the immunologically hot CT26-HER2 tumor, and an insight into the basis of the immune protection. Preliminarily, we conducted an RNA immune profiling and immune cell content characterization of CT26-HER2 tumor in comparison to the immunologically cold LLC1-HER2 tumor. CT26-HER2 tumor was implanted into HER2-transgenic BALB/c mice. Hallmarks of R-337 effects were the protection from primary tumor, long-term adaptive vaccination directed to both HER2 and CT26-wt cell neoantigens. The latter effect differentiated R-337 from OncoVEXGM-CSF. As to the basis of the immune protection, R-337 orchestrated several changes to the tumor immune profile, which cumulatively reversed the immunosuppression typical of this tumor (graphical abstract). Thus, Ido1 (inhibitor of T cell anticancer immunity) levels and T regulatory cell infiltration were decreased; Cd40 and Cd27 co-immunostimulatory markers were increased; the IFNγ cascade was activated. Of note was the dampening of IFN-I response, which we attribute to the fact that R-337 is fully equipped with genes that contrast the host innate response. The IFN-I shut-down likely favored viral replication and the expression of the mIL-12 payload, which, in turn, boosted the antitumor response. The results call for a characterization of tumor immune markers to employ oncolytic herpesviruses more precisely

    Diffusion tensor imaging mapping of brain white matter pathology in mitochondrial optic neuropathies

    Get PDF
    BACKGROUND AND PURPOSE: Brain white matter is frequently affected in mitochondrial diseases; optic atrophy gene 1-autosomal dominant optic atrophy and Leber hereditary optic neuropathy are the most frequent mitochondrial monosymptomatic optic neuropathies. In this observational study, brain white matter microstructure was characterized by DTI in patients with optic atrophy gene 1-autosomal dominant optic atrophy and Leber hereditary optic neuropathy, in relation to clinical and genetic features. MATERIALS AND METHODS: Nineteen patients with optic atrophy gene 1-autosomal dominant optic atrophy and 17 with Leber hereditary optic neuropathy older than 18 years of age, all genetically diagnosed, and 19 healthy volunteers underwent DTI by using a 1.5T MR imaging scanner and neurologic and ophthalmologic assessments. Brain white matter DTI metrics were calculated for all participants, and, in patients, their correlations with genetics and clinical findings were calculated. RESULTS: Compared with controls, patients with optic atrophy gene 1-autosomal dominant optic atrophy had an increased mean diffusivity in 29.2% of voxels analyzed within major white matter tracts distributed throughout the brain, while fractional anisotropy was reduced in 30.3% of voxels. For patients with Leber hereditary optic neuropathy, the proportion of altered voxels was only 0.5% and 5.5%, respectively, of which half was found within the optic radiation and 3.5%, in the smaller acoustic radiation. In almost all regions, fractional anisotropy diminished with age in patients with optic atrophy gene 1-autosomal dominant optic atrophy and correlated with average retinal nerve fiber layer thickness in several areas. Mean diffusivity increased in those with a missense mutation. Patients with Leber hereditary optic neuropathy taking idebenone had slightly milder changes. CONCLUSIONS: Patients with Leber hereditary optic neuropathy had preferential involvement of the optic and acoustic radiations, consistent with trans-synaptic degeneration, whereas patients with optic atrophy gene 1-autosomal dominant optic atrophy presented with widespread involvement suggestive of a multisystemic, possibly a congenital/developmental, disorder. White matter changes in Leber hereditary optic neuropathy and optic atrophy gene 1-autosomal dominant optic atrophy may be exploitable as biomarkers. ABBREVIATIONS: DOA autosomal dominant optic atrophy; FA fractional anisotropy; LHON Leber hereditary optic neuropathy; MD mean diffusivity; OPA1 optic atrophy gene 1 ;O R optic radiation; RNFL retinal nerve fiber layer; TBSS tract-based spatial statistic

    A surge in obsidian exploitation more than 1.2 million years ago at Simbiro III (Melka Kunture, Upper Awash, Ethiopia)

    Get PDF
    Pleistocene archaeology records the changing behaviour and capacities of early hominins. These behavioural changes, for example, to stone tools, are commonly linked to environmental constraints. It has been argued that, in earlier times, multiple activities of everyday life were all uniformly conducted at the same spot. The separation of focused activities across different localities, which indicates a degree of planning, according to this mindset characterizes later hominins since only 500,000 years ago. Simbiro III level C, in the upper Awash valley of Ethiopia, allows us to test this assumption in its assemblage of stone tools made only with obsidian, dated to more than 1.2 million years (Myr) old. Here we first reconstruct the palaeoenvironment, showing that the landscape was seasonally flooded. Following the deposition of an accumulation of obsidian cobbles by a meandering river, hominins began to exploit these in new ways, producing large tools with sharp cutting edges. We show through statistical analysis that this was a focused activity, that very standardized handaxes were produced and that this was a stone-tool workshop. We argue that at Simbiro III, hominins were doing much more than simply reacting to environmental changes; they were taking advantage of new opportunities, and developing new techniques and new skills according to them

    In Vitro Innovation of Tendon Tissue Engineering Strategies.

    Get PDF
    Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process

    Secondary post-geniculate involvement in Leber's hereditary optic neuropathy.

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is characterized by retinal ganglion cell (RGC) degeneration with the preferential involvement of those forming the papillomacular bundle. The optic nerve is considered the main pathological target for LHON. Our aim was to investigate the possible involvement of the post-geniculate visual pathway in LHON patients. We used diffusion-weighted imaging for in vivo evaluation. Mean diffusivity maps from 22 LHON visually impaired, 11 unaffected LHON mutation carriers and 22 healthy subjects were generated and compared at level of optic radiation (OR). Prefrontal and cerebellar white matter were also analyzed as internal controls. Furthermore, we studied the optic nerve and the lateral geniculate nucleus (LGN) in post-mortem specimens obtained from a severe case of LHON compared to an age-matched control. Mean diffusivity values of affected patients were higher than unaffected mutation carriers (P<0.05) and healthy subjects (P<0.01) in OR and not in the other brain regions. Increased OR diffusivity was associated with both disease duration (B\u200a=\u200a0.002; P<0.05) and lack of recovery of visual acuity (B\u200a=\u200a0.060; P<0.01). Post-mortem investigation detected atrophy (41.9\% decrease of neuron soma size in the magnocellular layers and 44.7\% decrease in the parvocellular layers) and, to a lesser extent, degeneration (28.5\% decrease of neuron density in the magnocellular layers and 28.7\% decrease in the parvocellular layers) in the LHON LGN associated with extremely severe axonal loss (99\%) in the optic nerve. The post-geniculate involvement in LHON patients is a downstream post-synaptic secondary phenomenon, reflecting de-afferentation rather than a primary neurodegeneration due to mitochondrial dysfunction of LGN neurons

    Interleukin-6 neutralization ameliorates symptoms in prematurely aged mice

    Get PDF
    Hutchinson\u2013Gilford progeria syndrome (HGPS) causes premature aging in children, with adipose tissue, skin and bone deterioration, and cardiovascular impairment. In HGPS cells and mouse models, high levels of interleukin-6, an inflammatory cytokine linked to aging processes, have been detected. Here, we show that inhibition of interleukin-6 activity by tocilizumab, a neutralizing antibody raised against interleukin-6 receptors, counteracts progeroid features in both HGPS fibroblasts and LmnaG609G/G609G progeroid mice. Tocilizumab treatment limits the accumulation of progerin, the toxic protein produced in HGPS cells, rescues nuclear envelope and chromatin abnormalities, and attenuates the hyperactivated DNA damage response. In vivo administration of tocilizumab reduces aortic lesions and adipose tissue dystrophy, delays the onset of lipodystrophy and kyphosis, avoids motor impairment, and preserves a good quality of life in progeroid mice. This work identifies tocilizumab as a valuable tool in HGPS therapy and, speculatively, in the treatment of a variety of aging-related disorders

    Retinal vascular impairment in Wolfram syndrome: an optical coherence tomography angiography study

    Get PDF
    To evaluate differences in macular and optic disc circulation in patients affected by Wolfram Syndrome (WS) employing optical coherence tomography-angiography (OCTA) imaging. In this retrospective study, 18 eyes from 10 WS patients, 16 eyes of 8 patients affected by type I diabetes and 17 eyes from 17 healthy controls were enrolled. All patients were imaged through OCT and OCTA and vascular parameters, as perfusion density (PD) and vessel length density (VLD) were measured. OCTA showed reduced PD in WS patients at the macular superficial capillary plexus (SCP, 27.8 ± 5.3%), deep vascular complex (DVC, 33.2 ± 1.9%) and optic nerve head (ONH, 21.2 ± 9.1%) compared to both diabetic patients (SCP 33.9 ± 1.9%, P &lt; 0.0001; DVC 33.2 ± 0.7%, P = 1.0; ONH 33.9 ± 1.3, P &lt; 0.0001) and healthy controls (SCP 31.6 ± 2.5, P = 0.002; DVC 34.0 ± 0.7%, P = 0.089; ONH 34.6 ± 0.8%, P &lt; 0.0001). Similarly, VLD was lower in WS patients at the SCP (10.9 ± 2.7%) and ONH levels (7.5 ± 4.1%) compared to diabetic patients (SCP 13.8 ± 1.2%, P = 0.001; DVC 13.8 ± 0.2%, P &lt; 0.0001; ONH 13.0 ± 0.7%, P = &lt; 0.0001), but higher in DVC (15.7 ± 1.2%, P &lt; 0.0001). Furthermore, VLD was lower in WS patients in all the vascular parameters compared to controls (SCP 13.8 ± 1.5%, P &lt; 0.0001; DVC 17.3 ± 0.6%, P &lt; 0.0001; ONH 15.7 ± 0.5%, P &lt; 0.0001). A significant microvasculature impairment in the macular SCP and ONH microvasculature was demonstrated in eyes affected by WS. Microvascular impairment may be considered a fundamental component of the neurodegenerative changes in WS
    • …
    corecore